Design & SimulationMay 13, 2022

Conceptual Structural Optimization for Urban Air Mobility

Want to learn more about conceptual structural optimization for urban air mobility?…
Avatar
Vishal Savane
Vishal is a SIMULIA Industry Solutions Manager, Sales Tech Support & UX.

Want to learn more about conceptual structural optimization for urban air mobility? Don’t miss the upcoming webinar!


When it comes to the transportation of the future, a few technologies stand out in particular: electric vehicles, autonomous vehicles, and vertical take-off and landing vehicles (VTOL). The latter are frequently designed to be electrically powered (eVTOL). A great deal of excitement and interest has gathered around urban air mobility (UAM), which would involve using eVTOLs in urban airspaces for both passenger and cargo transport, thus reducing ground traffic.

While the UAM industry is still getting off the ground, multiple startups and OEMs are working to develop concept vehicles, creating an already competitive market. In order to stay ahead in this emerging industry, these manufacturers must take advantage of new tools and methods to streamline the design process

Since sufficient battery energy density may become the limiting factor for the success of the electric UAM industry, one of the primary aims in the conceptual design phase is to determine the most lightweight vehicle structure that meets requirements. Determining the appropriate configuration and sizing of airframe structure is a challenging task and to achieve this goal, we need to make the best use of optimization technologies. In the work presented at NAFEMS World Congress (NWC) 2021, we presented an efficient workflow for conceptual structural sizing by combining parametric and non-parametric optimization techniques.

application on the 3DEXPERIENCE platform. Thanks to full associativity between simulation models and parametric design data, the time and effort required to design the airframe structure were greatly reduced. Considering external surfaces of previously developed eVTOL design as input, the parametric model is built. CATIA xGenerative Design application allows one to design the internal airframe structure using a combination of graphical visual scripting and the interactive 3D modeling interface.

Don’t miss the upcoming webinar to learn more about eVTOL conceptual development!

The left side below image shows the 3D modeling interface with different internal airframe components such as ribs, front and rear spar, pylon bulkheads, floor structure, front and rear bulkhead, center wing box, and stringers. The right image shows the graphical modeling interface where the parametric design graph can be quickly built by dragging and dropping existing components. With a graph, you get a global view of the dependencies between the collections of objects, parameters, and operators within your model.

to further reduce the mass by optimizing the distribution of outer skin thickness and stringer properties. The final optimized model was further checked for structural requirements like buckling and strength of the composite to validate the configuration.

.



SIMULIA offers an advanced simulation product portfolio, including AbaqusIsightfe-safeToscaSimpoe-MoldSIMPACKCST Studio SuiteXFlowPowerFLOW, and more. The SIMULIA Community is the place to find the latest resources for SIMULIA software and to collaborate with other users. The key that unlocks the door of innovative thinking and knowledge building, the SIMULIA Community provides you with the tools you need to expand your knowledge, whenever and wherever.

Stay up to date

Receive monthly updates on content you won’t want to miss

Subscribe

Register here to receive a monthly update on our newest content.