1. 3DS Blog
  2. 브랜드
  3. BIOVIA
  4. [BIOVIA] 3DEXPERIENCE CONFERENCE KOREA 2025 세션 소개

Company NewsApril 25, 2025

[BIOVIA] 3DEXPERIENCE CONFERENCE KOREA 2025 세션 소개

3DEXPERIENCE CONFERENCE KOREA 2025 세션을 소개합니다.
header
Avatar다쏘시스템코리아

목차

AI 기술이 빠르게 발전하고 있지만, 제조 산업에 실제 적용하는 일은 여전히 쉽지 않습니다.

오는 5월 29일 목요일, 서울 코엑스에서 개최될 3DEXPERIENCE CONFERENCE KOREA 2025에서는 다쏘시스템이 그 해답을 제시합니다. 버추얼 트윈, 생성형 AI, 그리고 3D UNIV+RSES를 통해 현실과 가상을 넘나드는 혁신을 만나보세요.

이번 블로그 시리즈에서는 컨퍼런스의 각 트랙을 미리 만나보실 수 있도록, 주요 발표 내용과 초록을 순차적으로 소개합니다.

BIOVIA Strategy Connecting VIRTUAL to REAL using MACE for Faster Material Innovation

  • Dassault Systèmes | Abhijit CHATTOPADHYAY BIOVIA APAC Tech Director

Despite its potential to transform society, materials research suffers from a major drawback: its long research timeline. Recently, machine-learning techniques have emerged as a viable solution to this drawback. Multi Atomic Cluster Expansion (MACE) machine learned forcefields enables researchers to set up and run exploratory molecular simulations faster than ever, reducing the time to solution for materials scientists. With this virtual acceleration BIOVIA provides – a cloud-based integrated solution that optimizes materials design and innovation combining the virtual and real world — potentially saving millions of research dollars. In this talk we share the BIOVIA digital twin strategy, which is a digital model of an intended or actual real-world physical product, system, or process (a physical twin) that serves as the effectively indistinguishable digital counterpart of it for practical purposes, such as simulation, testing, regulation, and manufacturing.

대상 R&D DT Journey with Dassault Systèmes

  • 대상 주식회사 DT 담당 PO팀 | 원웅재 과장

소재 모델링을 통한 유리소재 혁신

  • 코닝정밀소재 Modeling & Simulation팀 | 이성훈 수석연구원

Materials Studio를 활용한 나노기계설계법

  • 성균관대학교 공과대학 기계공학부 | 최준명 부교수

BIOVIA의 Materials Studio소프트웨어는 현존하는 상용 분자동역학 시뮬레이션 솔버 중 가장 직관적이면서도 범용성 있는 분석들을 제공합니다. 본 세션에서는 학술적 관점에서 해당 소프트웨어가 어떠한 이론적 바탕으로 구성되어 있는지, 또한 기계-반도체-에너지 산업현장에서 각기 어떻게 활용되고 있는지를 소개합니다. 특히 고분자 및 고분자 나노복합재료의 계면을 모델링한 사례와, 외부 열적-기계적 하중 하에서 보이는 재료의 응답을 수치적으로 어떻게 정량화했는지에 대한 방법론의 설명이 집중적으로 이루어집니다. 끝으로 AI 시대에 분자동역학 시뮬레이션 솔버가 나아가야 할 방향과 현재의 기술적 병목에 대한 코멘트를 함께 다룹니다.

Sequence-Driven Design of Cosmetic Biopolymers: Integrated Molecular Modeling with Discovery Studio and Materials Studio

  • ㈜아모레퍼시픽 R&I Center | 라찬수 수석연구원

Biologically-derived polymers such as peptides and oligonucleotides are gaining increasing attention in cosmetic applications due to their structural tunability and target-specific functionalities. In this study, we developed an integrated molecular modeling and experimental framework to identify and validate functional biopolymers for enhancing hair tensile strength and skin vitality. Initial sequence libraries of peptides and oligonucleotides were screened using Discovery Studio, focusing on molecular docking against keratin and epidermal protein targets. Top-ranked candidates were further analyzed using steered molecular dynamics (SMD) simulations to assess the binding stability and mechanical resistance of ligand–target complexes under directional force. To complement this, Materials Studio was employed to construct amorphous cell models and apply Forcite calculations, enabling comparative evaluation of molecular interaction energies and their correlation with in vitro efficacy across candidate structures. Synthesized peptides were validated in vitro through tensile strength testing on hair fibers, while oligonucleotide sequences were assessed for skin-related functions, including elasticity, inflammation reduction, and brightening effects. The trends observed from molecular modeling—particularly the resistance profiles from SMD and interaction energies from Forcite—aligned with experimental performance, reinforcing the predictive value of our integrated in silico–in vitro approach. This methodology offers a transferable strategy for accelerating the discovery of functional cosmetic biomaterials using combined biological and materials modeling platforms.

Materials Studio를 활용한 반도체 패키징 신뢰성 해석 및 설계 응용

  • 동의대학교 자동차공학과 | 장성욱 교수

In recent years, the demand for high-reliability semiconductorshas grown rapidly, particularly in industries such as automotive, aerospace, and space, where devices must perform under extreme environmental conditions. To develop such reliable semiconductor packages, it is essential to accurately predict the behavior of materials under diverse thermal and mechanical stresses, and to perform design and verification processes in parallel. However, major challenges persist—accurate measurement of material properties is limited, physical reliability tests require significant time and cost, and it remains difficult to ensure consistency between material-level simulations and actual reliability evaluations. This presentation introduces an integrated methodology using Materials Studio, focusing on molecular dynamics (MD)-based predictions of material propertiesand their application in electro-thermal-mechanical reliability analysisof semiconductor packages. By linking degradation characteristics derived from atomistic modeling with system-level simulations, this approach enables more realistic and predictive reliability assessments. Such multiscale integration plays a crucial role in the development of next-generation high-reliability semiconductor packaging.


#  [주요 아젠다] 3DEXPERIENCE CONFERENCE KOREA 2025

최신 정보 확인하기

새로운 콘텐츠를 놓치고 싶지 않다면, 구독해주세요

구독하기

매월 새로운 콘텐츠를 받아보고 싶다면, 구독해주세요.